
18 Sturm-Liouville Eigenvalue Problems

Up until now all our eigenvalue problems have been of the form

d2φ

dx2
+ λφ = 0 , 0 < x < l (1)

plus a mix of boundary conditions, generally being Dirichlet or Neumann
type. This is too narrow of a viewpoint, which I wish to point out through
a few examples.

Example 1: Simple spatial variation in diffusivity: D = D0(1 + x)2 .
Consider the problem

ut = D0[(1 + x)2ux]x 0 < x < 1 , t > 0

u(x, 0) = f(x) 0 < x < 1

u(0, t) = 0 = u(1, t) t > 0

(2)

From the separation of variables method, u(x, t) = T (t)φ(x), we obtain

dT

dt
= −λD0T and

d

dx
[(1 + x)2

dφ

dx
] + λφ = 0 ,

with φ(0) = φ(1) = 0. Note that by carrying through the differentiation, the
φ equation

(1 + x)2
d2φ

dx2
+ 2(1 + x)

dφ

dx
+ λφ = 0 (3)

is a Cauchy-Euler equation (recall the Review of ODEs appendix for a dis-
cussion of the equations). If we write φ(x) = (1 + x)r, the characteristic
equation for r becomes

r(r − 1) + 2r + λ = 0 ⇒ r = {−1±
√

1− 4λ}/2 .

Because we have to start at φ = 0 at x = 0, and end at φ = 0 at x = 1, assume
we need oscillatory solutions like we got out of (1), since λ ≥ 0. Hence,
assume λ > 1/4, and define (for notational convenience) ω :=

√
λ− 1/4.

Then the roots can be written as r = −1/2± iω, and since

(1 + x)−1/2±iω = (1 + x)−1/2(1 + x)±iω = (1 + x)−1/2e±iωln(1+x) ,
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a suitable fundamental set of solutions to (3) is

(1 + x)−1/2 cos(ωln(1 + x)) , (1 + x)−1/2 sin(ωln(1 + x)) .

Now φ(x) can be written as a linear combination of these functions, and since
φ(0) = 0, we have φ(x) = B(1 +x)−1/2 sin(ωln(1 +x)) satisfying (3) and this
boundary condition. Now

0 = φ(1) = 2−1/2B sin(ωln(2)) → sin(ωln(2)) = 0 → ωln(2) = nπ , n ≥ 1 .

Thus, ω2 = λ−1/4 = (nπ/ln(2))2. Therefore, the eigenvalues and associated
eigenfunctions for this problem are{

λn = 1/4 + ( nπ
ln(2)

)2 n = 1, 2, 3, . . .

φn(x) = (1 + x)−1/2 sin( nπ
ln(2)

ln(1 + x))
(4)

This gives us the solution form for problem (2):

u(x, t) = (1 + x)−1/2e−D0t/4

∞∑
n=1

Bne
−D0n2π2t/(ln(x))2 sin

(
nπ

ln(2)
ln(1 + x)

)
.

(5)

Remark: If we would not have made the above positivity assumption on
λ in Example 1, then assume λ < 1/4 and define α := 1

2

√
1− 4λ > 0.

Then solution of the characteristic equation would be r = −1/2± α, and so
φ(x) = (1 + x)−1/2{A(1 + x)α + B(1 + x)−α}. Now φ(0) = 0 = A + B, so
φ(x) = A(1+x)−1/2{(1+x)α−(1+x)−α}, while φ(1) = 0 = A2−1/2[2α−2−α],
which implies A = 0 since α > 0; so φ ≡ 0. Therefore, there is no eigenvalue
λ < 1/4. We’ll leave it as an exercise to draw the same conclusion about
λ = 1/4.

Exercise: A variable density vibrating string problem
Determine the eigenvalue problem for the following problem, and derive the
eigenvalues and associated eigenfunctions:

(1 + x)−2utt = c2uxx 0 < x < l , t > 0 , c > 0 is a constant
u(x, 0) = f(x) , ut(x, 0) = 0 0 < x < l
u(0, t) = 0 = u(l, t)
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Exercise: In considering acoustic measurements in a thin tube scaled to be
of unit length, let p(x, t) be acoustic pressure, and v(x, t) be volume velocity.
Given certain assumptions, one model to consider is

∂p

∂x
= − ρ

A(x)

∂v

∂t
,

∂v

∂x
= −A(x)

ρc2
∂p

∂t
,

where A(x) is the variable cross-sectional area of the tube at location x, ρ
is the air density in the tube, and c is the speed of sound. Suppose we have
scaled the problem so that c = 1 and ρ = 1. Assume also that A(x) is a
continuously differentiable function, and A(x) > 0 on [0, 1]. First eliminate
v in the above system to obtain a single equation for p(x, t). Let p(0, t) = 0
and px(1, t) = 0 for all t > 0. Then separate variables, p(x, t) = T (t)φ(x),
to obtain the EVP for this p-problem. (The eigenvalue equation is some-
times called Webster’s horn equation.) For general A(x) satisfying the above
conditions, if we assume real eigenvalues, then

1. Show that any eigenvalue λ must satisfy λ ≥ 0.

2. Show that λ = 0 is not an eigenvalue of the problem.

3. In the special case A(x) = eax, where a 6= 0, write out what the EVP
is in this case. Then show that the eigenvalues λn must satisfy the
transcendental equation 2

√
λ− a2/4/a = tan(

√
λ− a2/4), and hence,

there is an infinite ordered set of them, with λn →∞ as t→∞.

Example 2: Symmetric diffusion in a disk
For multidimensional diffusion equations, special cases arise in the case of
domains with nice geometry, for example disk and wedge shaped spatial do-
mains in R2, and spherical domains in R3. In the 2D situation, the Laplacian
in polar coordinates is

∇2 =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2
∂2

∂θ2
(6)

or in cylindrical coordinates, we have

∇2 =
1

r

∂

∂r
(r
∂

∂r
) +

1

r2
∂2

∂θ2
+

∂2

∂z2
(7)
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Figure 1: Coordinate angle definitions that will be used for spherical coordi-
nates in these Notes.

and in spherical coordinates (see Figure 1),

∇2 =
1

ρ2
∂

∂ρ
(ρ2

∂

∂ρ
) +

1

ρ2 sin2 φ

∂2

∂θ2
+

1

ρ2
∂2

∂φ2
+
cotφ

ρ2
∂

∂φ
. (8)

In fact, the radial part of the Laplacian, in arbitrary n dimensions (n ≥
1),with r notationally denoting the radial distance from the origin, is given
by

∇2
r =

∂2

∂r2
+
n− 1

r

∂

∂r
.

We will briefly look at some special problems in higher dimensions later in
these Notes, but for now let us consider the diffusion equation on the disk
spatial domain Ω := {(r, θ) : 0 ≤ r < a, 0 ≤ θ < 2π}, and consider the
symmetric case (u is independent of angle θ) ut = D

r
(rur)r r < a , t > 0 , D > 0 is a constant

u(r, 0) = f(r) r < a
u(a, t) = 0 u remains bounded on Ω

(9)

Let u(r, t) = T (t)φ(r), then (1/DT )dT
dt

= 1
rφ

d
dr

(r dφ
dr

) = −λ, so dT/dt =
−λDT , as usual, and

d

dr
(r
dφ

dr
) + λrφ = 0 = r

d2φ

dr2
+
dφ

dr
+ λrφ (10)
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with φ(a) = 0 and φ is bounded at r = 0. Note that (10) is not a Cauchy-
Euler equation, because of the r dependence associated with the λ term.
But it is a well-studied equation because it arises so much in practice; (10) is
Bessel’s equation of order 0, and we’ll study this variable coefficient EVP
later. However, an introduction to Bessel’s equation and Bessel functions is
given in Appendix F.

The point here in introducing these examples is to motivate us to briefly
study a more general class of EVPs called regular Sturm-Liouville Eigen-
value problems. They have the form

d
dx

(p(x)dφ
dx

)− q(x)φ+ λσ(x)φ = 0 a < x < b

αφ(a) + β dφ
dx

(a) = 0

γφ(b) + δ dφ
dx

(b) = 0

(11)

The functions and parameters in (11) must meet the following conditions:

• p(x) is continuous on [a, b], continuously differentiable on (a, b), p(x) >
0 on [a, b].

• q(x), σ(x) are continuous on [a, b], σ(x) > 0 , q(x) ≥ 0 on [a, b].

• α, β, γ, δ are real constants.

Remark: The sign convention on the q term in the equation is not universal.
We use the negative sign in the equation so all the inequalities in the above
conditions are either “>” or “≥”.

Example 3: In our usual example φ′′ + λφ = 0, 0 < x < l, φ(0) = 0 =
φ(l), p(x) ≡ 1, q(x) ≡ 0, σ(x) ≡ 1, and β = δ = 0. Then we obtain
λ = λn = n2π2/l2, φ = φn(x) = sin(nπx/l), n = 1, 2, 3, . . .. Given that we
have explicit representations for the eigenvalues and eigenfunctions we can
make some straightforward observations:

1. The eigenvalues are real and ordered; that is, λ1 < λ2 < λ3 < . . ., with
λn →∞ as n→∞.

2. Corresponding to each λn is an eigenfunction, φn = sin(nπx/l), that
has n− 1 zeros in the interval (0, l) (see Figure 2).
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Figure 2: Note the splicing of zeroes of successive eigenfunctions for Example
3.

3. The eigenfunctions {sin(nπx/l)}n≥1 form an orthogonal set of functions
on (0, l); that is,

< φn, φm >:=

∫ l

0

φn(x)φm(x)dx =∫ l

0

sin(nπx/l) sin(mπx/l)dx =

{
0 if n 6= m
l/2 if n = m .

4. The eigenfunctions are complete with respect to the set of piecewise
smooth functions f on (0, l); that is, we can, for such a function f ,
write f(x) ∼

∑∞
n=1 anφn(x), where the infinite sum converges for all

x ∈ (0, l), to [f(x+) + f(x−)]/2, if the coefficients are chosen to be the
Fourier coefficients of f . That is, an =< f, φn > / < φn, φn >.

The goal here is to present the case that problems of the form (11) with
coefficients satisfying the bulleted items have the same properties as our pro-
totypical EVP we have been working with. (So our prototypical EVP is a
regular Sturm-Liouville Eigenvalue problem.)

6



Figure 3: This shows the first 5 eigenfunctions associated with the eigenvalue
problem (1 + x)2φ′′ + λφ = 0, φ(0) = φ(1) = 0.

Example 1, again: Returning to example 1, p(x) = (1 + x)2, q(x) ≡ 0,
and β = δ = 0, so this example leads to a regular Sturm-Liouville EVP.

Example 2, again: From (10), p(r) = r, q(r) ≡ 0, and σ(r) = r, and on
the interval [0, a], α = 0 , δ = 0. Now the smoothness conditions in the
bulleted conditions is satisfied by this problem, but p(r) and σ(r) are not
strictly positive on the closed interval [0, a]. However, p, σ are zero only at
the boundary point r = 0, otherwise the conditions are met. So example 2
is an example of a singular Sturm-Liouville EVP, but it is close enough to
the regular case that what properties are brought up below for the regular
Sturm-Liouville EVP will also hold the singular Sturm-Liouville EVP too.

Exercise: For the exercise on page 2, what is the p, q, σ for the derived EVP?

Sturm-Liouville Theorem: The regular Sturm-Liouville EVP defined by
(11) and the bulleted points below (11) satisfies
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1. There exists an infinite number of discrete eigenvalues, λn, n = 1, 2, . . .,
that are real, positive, ordered, and λn →∞ as n→∞.

2. The eigenfunctions corresponding to different eigenvalues are orthogo-
nal on [a, b] with respect to σ; that is, for the eigenvalue-eigenfunction
pairs {λi, φi}, {λj, φj}, λi 6= λj,

< φi, φj >=
∫ b
a
φi(x)φj(x)σ(x)dx = 0.

3. Eigenfunctions of the same eigenvalue are unique up to multiplicative
constant.

4. The nth eigenfunction φn(x) associated with the nth eigenvalue λn has
exactly n− 1 zeros in (a, b). (For an example, see Figure 3.)

5. {φn}n≥1 are complete with respect to piecewise smooth functions f on
[a, b]. Thus,∫ b
a
{f(x)−

∑N
1 anφn(x)}2σ(x)dx→ 0 as N →∞.

Our intention is not go through a full proof of this theorem here, but
to go through some parts of it to illustrate the arguments. Consult a more
advanced treatment of Sturm-Liouville EVPs to get the full story.

For purposes here let the boundary conditions for (11) be the special
Dirichlet conditions: φ(a) = 0 = φ(b).

Claim 1: Any eigenvalue of (11) is real
Let λ be any eigenvalue of (11), with associate eigenfunction φ(x). If λ is
complex, then λ = λr + iλi and its complex conjugate is λ̄ = λr − iλi, with
associated eigenfunction ψ(x) = φ̄(x). Since {λ, φ} satisfies

d

dx
(p
dφ

dx
)− qφ+ λσφ = 0 on a < x < b (12)

φ(a) = 0 = φ(b)

then, by taking the complex conjugation of the equation (12), and noting
that p, q and σ are real functions, {λ̄, ψ} satisfies

d

dx
(p
dψ

dx
)− qψ + λ̄σψ = 0 on a < x < b (13)

ψ(a) = 0 = ψ(b)
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So, multiply equation (12) by ψ and multiply (13) by φ, then subtract the
two resulting equations. This gives us

ψ(pφ′)′ − φ(pψ′)′ + (λ− λ̄)σψφ = 0 .

Now integrate:∫ b

a

[ψ(pφ′)′ − φ(pψ′)′]dx+ (λ− λ̄)

∫ b

a

σφψdx = 0 .

By integration-by-parts,∫ b

a

[ψ(pφ′)′− φ(pψ′)′]dx = ψpφ′|ba−
∫ b

a

pψ′φ′dx−{φpψ′|ba−
∫ b

a

pφ′ψ′dx} = 0

then

(λ− λ̄)

∫ b

a

σφψdx = (λ− λ̄)

∫ b

a

|φ|2σdx = 0 .

Since |φ|2 = φψ = φφ̄ > 0, then λ = λ̄, which implies λ is real.

Claim 2: λ > 0
Let {λ, φ} be any eigenvalue-eigenfunction pair, then by (12), φ(pφ′)′−qφ2 +
λσφ2 = 0 on interval (a, b). So,

0 =

∫ b

a

φ(pφ′)′dx−
∫ b

a

qφ2dx+ λ

∫ b

a

σφ2dx .

By integration-by-parts, the first integral, after applying the boundary con-
ditions, is −

∫ b
a
p(φ′)2dx. Thus,

λ =

∫ b
a
{p(φ′)2 + qφ2}dx∫ b

a
φ2σdx

≥ 0 . (14)

Because of the positivity conditions we imposed on p, q, σ, and the fact the
φ is a non-zero function, the nominator in (14) is positive, so λ > 0.

Remark: The right side quotient of (14) can be considered a functional of φ,
so write

λ = R[φ] .

9



R[·] is called the Rayleigh quotient, and plays a big part in characteriz-
ing the eigenvalues in Sturm-Liouville EVPs. An outline of the use of the
Rayleigh quotient in characterizing eigenvalues through a minimization prin-
ciple is presented in Appendix E.

Claim 3: Eigenfunctions corresponding to different eigenvalues are orthogo-
nal with respect to σ(x).
Let {λ, φ}, {µ, ψ} be two arbitrary eigenvalue-eigenfunction pairs as solutions
to (12), with λ 6= µ. Thus,

(pφ′)′ − qφ+ λσφ = 0 , φ(a) = φ(b) = 0

(pψ′)′ − qψ + µσψ = 0 , ψ(a) = ψ(b) = 0

Multiply the first equation by ψ, the second equation by φ, subtract and
integrate: ∫ b

a

[ψ(pφ′)′ − φ(pψ′)′]dx+ (λ− µ)

∫ b

a

σφψdx = 0 .

The first integral is 0 via integration-by-parts and boundary conditions. Since
λ 6= µ, then

∫ b
a
σφψdx = 0, which was to be proved.

Claim 4: Eigenfunctions of the same eigenvalue are unique up to a multi-
plicative constant.
Let φ, ψ be two eigenfunctions associated with the same eigenvalue λ. Then

0 = φ[(pψ′)′ − qψ + λσψ]− ψ[(pφ′)′ − qφ+ λσφ]

= φ(pψ′)′ − ψ(pφ′)′

= [p(φψ′ − ψφ′)]′

which implies p(φψ′ − ψφ′) = constant = C. Applying the boundary condi-
tions leads to C = 0, so

φψ′ − ψφ′ = 0 . (15)

This statement should be recognizable as the Wronskian of ψ and φ. Assume
neither φ or ψ vanish in the interval, then we can write this expression as
ψ′/ψ = φ′/φ, or (lnψ)′ = (lnφ)′, or lnψ − lnφ = constant → ln(ψ/φ) =
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constant → ψ/φ = constant; that is, ψ = kφ for some constant k. Now if
there is an x0 where φ(x0) = 0, for example, then from (15), ψ(x0)φ

′(x0) =
0. But if φ′(x0) = 0, then φ(x) ≡ 0 because φ(x) is the solution to a
homogeneous second-order linear ode with zero initial conditions. Since φ
is an eigenfunction, this can not be the case, so ψ(x0) = 0, which means
ψ = kφ holds automatically at that point.

We will not pursue proving further conclusions of the Sturm-Liouville
theorem, but you can see the pattern of reasoning behind it. A point here is
that in most cases involving variable coefficient EVPs, we do not have much
hope of obtaining an explicit formulas for the eigenvalues and eigenfunctions,
but the general Sturm-Liouville problems behave qualitatively exactly like our
simpler, constant coefficient EVP.

Remark: About an infinite number of eigenvalues going off to infinity:
consider the Sturm-Liouville problem (11) again, and write

(p(x)φ′)′ − q(x)φ = −F (x) a < x < b

φ(a) = 0 = φ(b)
(16)

where now we forget for a moment that F (x) = λσ(x)φ(x). It turns out,
as we discuss later, that there exists a function G(x, ξ), called the Green’s
function for the problem (16), such that the solution to the problem can
be written as

φ(x) =

∫ b

a

G(x, ξ)F (ξ)dξ .

For our eigenvalue problem, F is in terms of the solution (and its eigenvalue),
so this statement gives the integral equation

φ(x) = λ

∫ b

a

G(x, ξ)σ(ξ)φ(ξ)dξ . (17)

That is, given λ, its associated eigenfunction φ satisfies (17), a Fredholm
integral equation of the first kind. The study of integral equations was very
intense in the early part of the twentieth century, and has been a valuable
way to obtain properties of solutions to ordinary (and partial) differential
equations. One of the consequences, when λ = λn and φ = φn(x) is a
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Bessel’s inequality

∞∑
n=1

φ2
n

λ2n
∫ b
a
σφ2

ndx
≤
∫ b

a

G(x, ξ)2σ(ξ)dξ ,

which gives

∞∑
n=1

1

λ2n
=

∫ b

a

σ(x)
∞∑
n=1

φ2
n(x)

λ2n
∫ b
a
σφ2

ndξ
dx ≤

∫ b

a

∫ b

a

G(x, ξ)2σ(ξ)σ(x)dξdx <∞ ,

so
∑∞

n=1
1
λ2n

is a convergent series. This implies 1/λ2n → 0 as n→∞; that is,
λn →∞ as n→∞.

Summary: Make sure you know the definition of a regular Sturm-Liouville
EVP, and in our limited discussion what distinguishes it from a singular
Sturm-Liouville EVP. You should know the statement of the Sturm-Liouville
Theorem, that is, the properties of the solutions {λn, φn}. Finally, be able
to recall the Rayleigh quotient for a given problem.

Exercises: Consider the eigenvalue problem
d2φ
dx2
− ν dφ

dx
+ λφ = 0 0 < x < π

dφ
dx

(0) = dφ
dx

(π) = 0 ν > 0 is a constant

1. Put the equation into Sturm-Liouville form. What functions corre-
spond to p(x), q(x), σ(x)? From this what do you know about the
eigenvalues and eigenfunctions without trying to compute them?

2. Derive the set of eigenvalues and associated eigenfunctions for this EVP.

3. In the next section we will mention PDE eigenvalue problems, but a
non-standard one is the Stekloff problem

∇2u = 0 in Ω
∂u
∂ν

= λu on ∂Ω
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where the eigenvalue appears in the boundary condition1. Consider a
1D problem with Ω = (0, 1), so the equation becomes u′′ = 0 in (0, 1).
Determine the set of eigenvalues for this problem.

1ν is the unit vector defined on the boundary of Ω, so ∂u/∂ν is the flux of u out of the
domain.
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